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Abstract. Music emotion recognition (M.E.R.) is a multidisciplinary
field that integrates computer science, affective computing, and
neuroscience elements to analyze musical features to detect emotions.
Most research in this field has focused on low and mid-level features,
often ignoring theoretical and harmonic aspects of music. In this work,
we propose using regression-based machine learning models applied to
word embeddings in harmonic structures (chords). The results indicate
an RMSE of 0.0252 and an R2 score of 0.9751 for the valence dimension,
in comparison with the arousal, an RMSE of 0.1319 and an R2

score of 0.4676. These findings indicate that incorporating theoretical
and harmonic concepts enhances the performance of M.E.R models,
particularly in the valence dimension, reflecting improved detection of
the positivity of emotions.
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1 Introduction

Music has remarkably impacted social, cultural, and political aspects. For this
reason, it has been the target of many studies, one of them being the relationship
between emotions and music [13] since music is a means of expression capable
of evoking emotions [6].

Music Emotion Recognition (M.E.R.) has incorporated knowledge from
several fields, such as computer science, affective computing, and neuroscience. It
aims to analyze musical features extracted from audio signals (low and mid-level)
and abstract features such as song lyrics (high-level) [13, 9, 15, 7].

Within M.E.R.’s works, two approaches for linking emotions and songs
predominate. The first one attaches a general emotion to the whole work
(song-level), a static approach. The second, dynamic approach, focuses on
detecting the music emotion variations that occur through the song, namely
MEDV (music emotion variation) [9, 6].

Emotional perception is complex because it involves multiple variables, such
as the song or external information, such as the listener’s social, cultural, and
emotional context [17, 7].

Selecting the appropriate taxonomy is crucial for clearly delineating the
problem as either a multi-class classification or a regression task [9]. In this
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regard, there are two main approaches: categorical taxonomies, which represent
emotions through adjectives (such as Hevner’s model [11]), and dimensional
taxonomies, which represent emotions employing numerical values (such as
Russell and Thayer’s models [18, 16, 20]). The dimensional representation is
organized based on two emotional axes: valence and arousal. Valence represents
how pleasant an emotion is, and arousal represents excitement [7].

Traditional M.E.R. works are commonly based on the analysis of
low-mid-level features. Therefore, as several works have proposed, information
and features directly linked to emotions are needed [15, 17, 5, 22, 8].

Important musical concepts, such as theory and harmony, must be
understood in the music-emotion relationship [11, 19, 15]. In this context, there
are two essential elements: scales and chords. A scale is a succession of notes
that follow a pattern. At the same time, a chord is a sequence of more than
two notes. Each note forms a chord within a scale, which serves a function, such
as determining the scale mode (major or minor) or indicating a transition or
end/rest of a segment [10].

Similarly, according to Steinbeis’ experiments [19], the listener expects a sense
of closure by resting chords at the end of a harmonic progression. Replacing
these with transitional chords can alter that emotional experience and change
the expectation of the work’s end.

Additionally, a certain similarity between the representation of chords and
natural language has been pointed out, thus enabling the application of Natural
Language Processing (NLP) techniques [12, 8].

This work introduces a technique combining harmony ideas and musical
theory to improve music emotion recognition. We present adapted word
embeddings to song chords based on natural language processing (NLP)
methods. This method chooses suitable machine learning models to interpret
the chord embeddings, facilitating a simpler, detailed analysis. Finally, the main
goal of this work is to predict valence and arousal values to ensure that we can
precisely detect the emotions perceived in music.

2 Background

The traditional methodology of M.E.R works is based on analyzing low-mid-level
features through machine learning models. Nevertheless, multimodal strategies
that assemble deep learning, NLP, and traditional techniques have been adopted,
generating robust models.

In this regard, Panda et al.[15] underline the need for design elements that
capture the music-emotion relation. This work is based on a novel set of features
and employs a support vector machine model for the multi-classification problem,
reaching a 76.4% value for an f1-score metric.

On the other hand, Yang’s work [21] carries out emotion recognition through
a Back Propagation algorithm (BP). The model’s input was a set of six different
low-level features. Enhance the BP algorithm with metaheuristic techniques,
specifically an artificial bee colony algorithm. The results indicate an MAE of
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0.8872, RMSE of 0.1066, and an R2 of 0.4606 for the valence dimension. For the
arousal dimension, an MAE of 0.9156, RMSE of 0.1322, and R2 of 0.6687.

Some multi-modal approaches merge low-mid-level features with high-level
information through deep learning and NLP models. In [17], the work addressed
emotion recognition by analyzing two types of features. Researchers used CNN
models for the low-level features (in spectrogram form) and applied several NLP
methods to the song lyrics, reaching the best results with BERT embeddings.

On the other hand, in work [3], the focus is on the MER task using source
separation from the PMEmo dataset, where the audio is split into four tracks
(vocals, bass, drums, and other), from which spectrograms were extracted.

At the same time, efforts have been made to detect emotions using chords
and harmony progressions. Cho’s work [5] performs emotion detection based on
MIDI and audio files. This work uses a chord matrix (coding the chord position)
in combination with low-level features to predict the valence and arousal values
through an SVR model. This results in an MSE of 0.67 for the valence dimension
with the MIDI files and an MSE of 0.65 for the arousal using the audio files.
In contrast, Zhang’s work [22] tackles the M.E.R problem through statistical
methods. A database that bonds emotion to a set of chords and identifies the
chords by the analysis of low-level features.

NLP methods are not limited to song lyrics analysis. To demonstrate that
embeddings can describe chords like music theory does, Lahnala’s work [12],
for example, uses Word2Vec predictive embeddings to capture the association
between chords. On the other hand, Greer [8] improves the precision of music
emotion classification by approaching the problem as a multi-classification
problem by combining lyrics and chords into shared vectors.

3 Methods

Figure 1 illustrates the overall methodology diagram used in this work. The
following sections provide a detailed explanation of each step.

3.1 Dataset

This study uses two well-known datasets in the M.E.R field: PMEMO [23] and
MEDV [1]. Both datasets include static dimensional annotations composed of
valence and arousal axes whose values are normalized from 0 to 1. The MEDV
dataset includes 1802 MP3 audio files for 45 seconds. The PMEMO dataset has
767 audio MP3 files whose duration may vary. The sample frequency is the same
in both datasets, 44.1 kHz.

3.2 Audio File Conversion

This work employs the Python libraries Librosa [14], Soundfile, and FFmpeg,
which have functions that boost reading, conversion between different types of
audio files, and writing of new files. The audio file format was converted from
MP3 to new WAV files.

49

NLP Applied to Musical Harmonic Structures for Music Emotion Recognition

Research in Computing Science 154(5), 2025ISSN 1870-4069



Fig. 1. Methodology implemented for the music emotion recognition
(dimensional taxonomy).

3.3 Chord Detection and Data Augmentation

Chord detection was performed using the MADMOM [4] library (MADMOM
only works with WAV files). In this way, chords were retrieved from the 2569
audio files. However, MADMOM only recognizes major and minor chords.

Chord transposition was used for data augmentation, a musical technique
that increases or decreases the notes of a chord. Thus, transposition was applied
in half-tone, whole-tone intervals (ascending and descending). The table 1 shows
an example of this technique. With the increased data, the corpus was extended
to 12845 progressions. Even with the limitation of MADMOM and the fact that
there are only 12 sounds in Western music, the final dictionary is restricted to
24 chords.

3.4 Embeddings

Cooccurrence-based embeddings, such as word2vec, capture words’ semantic and
syntactic information and represent it in a vector space. In this way, each word
forms a vector RN where the dimension N ≥ 100. Thus, based on their proximity
in the plane, it can be known which words share context [17]. Skip-gram and
CBOW are methods of such embeddings. Skip-gram predicts the context using
the core word, while CBOW identifies the core word from the surrounding
context [12, 8].

Based on Lanhala’s work [12], CBOW and skip-gram were used as
embeddings. The size of the embeddings was set to 100 and 200, while the
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Table 1. Data augmentation for the song ”I Have Questions” by ”Camila Cabello”
from the PMEMO dataset (just the first four chords).

Chords Arousal Valence Type

G#min Emaj F#maj G#min 0.7375 0.7375 whole-tone Down

Amin Fmaj Gmaj Amin 0.7375 0.7375 half-tone Down

A#min F#maj G#maj
A#min

0.7375 0.7375 Source

Bmin Gmaj Amaj Bmin 0.7375 0.7375 half-tone Up

Cmin G#maj A#maj Cmin 0.7375 0.7375 whole-tone Up

windows were 5, 10, and 20. Each song was set to a maximum length of 40
chords, truncating with zeros if necessary, and the embeddings for each chord
were averaged to obtain a unique embedding.

Subsequently, a PCA dimensionality reduction algorithm was applied to
visualize the relationship between chords in a two-dimensional plane. Figure
2 shows a circular arrangement similar to the ”circle of fifths.” This structure
indicates the relationship and similarity between chords [12, 10]. Despite the
limited dictionary, the representation of the relationship between major and
minor chords is inadequate in the plan.

3.5 Machine Learning Model

A machine learning model has been implemented for emotion recognition.
PyCaret library [2] was employed to automate the model selection and
validation process for a regression task. The experimental setup used a train
size of 80%, with the remaining 20% reserved for validation. The split was
performed randomly to ensure a representative data distribution across both
subsets. Various regression algorithms were trained and evaluated during the
model comparison phase. Model performance was assessed based on the mean
absolute error (MAE), root mean squared error (RMSE), and the coefficient of
determination (R2). Models were ranked according to these metrics, and the
best-performing model was selected based on the primary evaluation criteria.
Finally, a 10-fold cross-validation was performed to validate the best model
chosen for valence and arousal.

The models that consistently performed best were the Gradient Boosting
Regressor (GBR), Light Gradient Boosting Machine (LIGHTBGM),
Random Forest (RF), and Extra Trees Classifier (ET). The model takes
the unique embeddings as input and produces the valence and arousal values as
output.

The RMSE, MAE, and R2 metrics are the most commonly used in regression
problems for emotion recognition [21].

The root mean square error (RMSE) measures the dispersion of errors
and penalizes extreme values (equation 1, [21]). The mean absolute error
(MAE) calculates the average difference between the actual and predicted values
(equation 2, [21]). The coefficient of determination R2 evaluates how well the
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Fig. 2. Vector representation of the relationships captured by the single chord
embeddings. The minor chords form the outer circle, and the major chords form the
inner circle.

predicted values match the actual values; an R2 close to 1 indicates better
accuracy (equation 3, [21]).

Where yi are the observed values, ŷi is the model predictions, and ȳ represents
the mean of the observed values:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (1)

MAE =
1

n

n∑
i=1

|yi − ŷi| , (2)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
. (3)

4 Results

4.1 Embeddings

The Skip-gram and CBOW models retrieved the embedding of each dictionary
element. Both methods capture the relationship between chords just as music
theory does. However, when evaluating the cosine similarity of the five most
similar chords (figure 3), CBOW showed lower values, so Skip-gram embeddings
were used exclusively in the subsequent experiments.
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Fig. 3. Blue: skip-gram. Red: Cbow. It shows the five most similar chords: A minor,
C major, B minor, and D major.

4.2 Emotion Recognition

The search for the best machine learning models with PyCaret yields metrics
from Tables ?? and 2, which compare the models grouped by valence and arousal.

In the arousal dimension, the GBR and LIGHTGBM models demonstrate
comparable results. The difference between errors is slight and does not exceed
0.0006 points for the MAE and 0.0019 for the RMSE. The models differ in the
R2, with the highest value, 0.4620, and the lowest, 0.4573.

According to Table 2, in the dimension of arousal, the error is comparatively
reduced when working with embeddings of size 100, and the value of R2 is higher
than with embeddings of size 200. The best result is obtained with embeddings
of size 100 and a window of 10, employing the lightgbm model.

In the valence dimension, the LIGHTGMB model achieves fewer errors and
better scores on the R2. In general, for this axis, better results are obtained
with embeddings of size 200. However, the best result is achieved with 100
embeddings and a 5-window, with an MAE of 0.0175, an RMSE of 0.0260, and
an R2 of 0.9733.

Table ?? shows how, in the embedding vectors with larger size (200), better
results are achieved with larger contextual windows (10 and 20). On the contrary,
in embeddings with reduced size (100), the best result is achieved with a small
contextual window (5).
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Table 2. Comparison of metrics for Arousal with different models and configurations
(Dim: 100 and Dim: 200).

Dim: 100 Dim: 200

MAE RMSE R2 MAE RMSE R2

Win: 5

gbr 0.1062 0.1330 0.4585 0.1064 0.1332 0.4571

lightgbm 0.1062 0.1332 0.4566 0.1061 0.1331 0.4573

rf 0.1062 0.1339 0.4513 0.1067 0.1343 0.4475

Win: 10

gbr 0.1062 0.1330 0.4581 0.1063 0.1331 0.4573

lightgbm 0.1058 0.1326 0.4620 0.1061 0.1332 0.4571

rf 0.1064 0.1341 0.4493 0.1065 0.1339 0.4506

Win: 20

gbr 0.1064 0.1332 0.4564 0.1062 0.1331 0.4574

lightgbm 0.1061 0.1330 0.4582 0.1065 0.1337 0.4529

rf 0.1064 0.1349 0.4508 0.1065 0.1342 0.4484

The values of MAE, RMSE, and R2 for Arousal. ’Dim’ corresponds to the embedding
dimension, and ’Win’ corresponds to the size of the contextual window.

4.3 Cross Validation

The models with the best results in embeddings of size 100 and window size
five were selected since this configuration optimized the performance in valence.
Thus, LIGHTGBM was chosen for valence and GBR for arousal. Figure 4 shows
that the valence predictions are close to the actual values, while the arousal
predictions are concentrated in a middle range, moving away from the baseline.
Each model was retrained and validated using a 10-fold cross-validation strategy.

The results obtained from this experiment are summarized in Tables 4 and 5.
For the arousal dimension, the model achieved a mean MAE of 0.1049, a mean
RMSE of 0.1319, and a mean R2 of 0.4676. In the case of valence, the model
achieved a mean MAE of 0.0167, a mean RMSE of 0.0252, and a mean R2 of
0.9751, with relatively low standard deviations across all folds.

A subset of ’simple’ songs (those with reduced progressions and only major
and minor chords) was evaluated as a comparison. Figure 5 shows how the
predictions follow the previous trends in both dimensions, highlighting a better
performance in arousal for these songs.

4.4 Comparison

Table 6 compares the best results of selected state-of-the-art works with the best
model proposed in this study. The results highlight that the analysis of harmonic
structures achieves better performance than the analysis of purely acoustic
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Table 3. Comparison of metrics for Valence with different models and configurations
(Dim: 100 and Dim: 200).

Dim: 100 Dim: 200

MAE RMSE R2 MAE RMSE R2

Win: 5

lightgbm 0.0175 0.0260 0.9733 0.0332 0.0461 0.9160

et 0.0186 0.0277 0.9696 0.0349 0.0486 0.9069

rf 0.0188 0.0280 0.9691 0.0351 0.0488 0.9060

Win: 10

lightgbm 0.0328 0.0457
0.9176

0.0181 0.0272 0.9708

et 0.0343 0.0478 0.9098 0.0193 0.0289 0.9671

rf 0.0345 0.0483 0.9098 0.0196 0.0294 0.9660

Win: 20

lightgbm 0.0327 0.0463 0.9192 0.0175 0.0268 0.9717

et 0.0342 0.0473 0.9118 0.0184 0.0283 0.9684

rf 0.0345 0.0478 0.9099 0.0186 0.0286 0.9678

The values of MAE, RMSE, and R2 for Valence. ’Dim’ corresponds to the embedding
dimension, and ’Win’ corresponds to the size of the contextual window.

Table 4. Cross-validation results for the arousal dimension after data augmentation.

Fold MAE RMSE R2

0 0.1073 0.1343 0.4541
1 0.1024 0.1276 0.4609
2 0.1023 0.1284 0.4850
3 0.1071 0.1353 0.4693
4 0.1014 0.1282 0.4961
5 0.1025 0.1291 0.4956
6 0.1052 0.1314 0.4574
7 0.1099 0.1384 0.4433
8 0.1056 0.1335 0.4609
9 0.1054 0.1331 0.4534

Mean 0.1049 0.1319 0.4676
Std 0.0026 0.0034 0.0175

The table reports the MAE, RMSE, and R2 metrics obtained from 10-fold
cross-validation for the gbr model for the arousal dimension.

characteristics, at least for recognizing the valence (positivity or negativity) a
listener perceives.

Skip-gram predictive embeddings facilitate pattern learning in artificial
intelligence models, enhancing the analysis of harmonic structures for emotion
recognition. Thus, combining high-level harmonic features informed by music
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Fig. 4. Behavior of the model in the dimensions of arousal and valence.

Table 5. Cross-validation results for the valence dimension after data augmentation.

Fold MAE RMSE R2

0 0.0166 0.0255 0.9733
1 0.0166 0.0253 0.9769
2 0.0163 0.0233 0.9786
3 0.0162 0.0239 0.9760
4 0.0165 0.0253 0.9756
5 0.0169 0.0259 0.9740
6 0.0168 0.0251 0.9751
7 0.0168 0.0243 0.9769
8 0.0173 0.0273 0.9710
9 0.0166 0.0257 0.9733

Mean 0.0167 0.0252 0.9751
Std 0.0003 0.0011 0.0021

The table reports the MAE, RMSE, and R2 metrics obtained from 10-fold
cross-validation for the lightgbm model for the valence dimension.

theory with natural language processing techniques proves more efficient than
traditional MER approaches for recognizing the valence dimension.

However, low-level acoustic features remain superior for recognizing the
arousal dimension. Acoustic-based systems typically consider a wide range of
features such as pitch, timbre, and rhythm. In contrast, the harmonic analysis
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Fig. 5. Comparison between actual and predicted values for the easy songs set.

in this work was limited to only two chord modes (major and minor), focusing
on basic chord structures.

Table 6. Comparison of state-of-the-art results and the present work. RMSE and R2

metrics for Arousal and Valence are shown.

RMSE R2 T.C

Arousal Valence Arousal Valence

Y-H. Cho [5] 0.806 1.104 — — Chords
PMEMO [23] 0.102 0.124 — — Acoustics
EmoMucs [3] 0.2307 0.2373 0.6046 0.4584 Acoustics
Yang [21] 0.1322 0.1066 0.6687 0.4606 Acoustics
Proposed 0.1319 0.0252 0.4676 0.9751 Chords

Note: The table shows the best results of each work. Column T.C references the main

feature that drives the models. Works marked with --- did not report the R2 metric.

5 Discussion and Conclusion

The predictive skip-gram embeddings could capture the music-theoretic
relationship between major and minor chords, similar to Lahnala’s work
[12]. When representing the embeddings in the plane, the distribution of the
embeddings is almost similar to the circle of fifths of music theory, failing in
the distribution of the outer circle (relative minors). However, the data set used
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in this work was limited since, unlike Lahnala’s or Greer’s work [12, 8], only
major and minor chords were extracted, resulting in a reduced chord dictionary.
Even so, this only affects the representation in the plane since when calculating
the cosine similarity (figure 3), we observe how the embeddings manage to
capture the relationship between relative major and minor. Thus, skip-gram
boosted with data augmentation can capture relationships between chords as
music theory dictates.

Finally, it can be observed how analyzing the harmonic structure of a
song improves the results obtained by M.E.R systems based on the analysis
of low-level acoustic features [23, 21], demonstrating the strong link of harmonic
structure in the perception of positivity of emotions in music, furthermore,
using only major and minor chords does not affect emotion recognition and
boosts the results in the valence dimension because major and minor modes
are often associated with feelings such as happiness and sad [11]. The model
performs better than the average in the arousal dimension, as indicated by the
R2. However, the result is low compared to works such as [23, 21]. This may be
so because the harmonic structure of a song does not reflect other characteristics
such as rhythm, color, or degree of energy, thus determining that, in predicting
the degree of intensity of an emotion, it is better to work with low-level
characteristics. Nonetheless, there is significant potential for improvement,
particularly by incorporating more complex chords. Additionally, implementing
contextual embeddings could enhance the results further. However, this would
necessitate a larger dataset.

In conclusion, analyzing harmonic structures with basic chords improves
emotion recognition based on dimensional taxonomies and significantly impacts
predicting valence. Nonetheless, the exclusive analysis of harmonic structures
leaves aside other factors related to the arousal axis, such as rhythm, which
affects the performance of machine learning models in predicting values of
this axis.

As future work, we aim to explore multimodal approaches that combine chord
embeddings with acoustic features derived from spectrogram representations,
such as chromagrams, constant-Q transforms (CQT), and mel-spectrograms.
While chord embeddings effectively capture the harmonic structure relevant to
valence prediction, spectrogram-based features offer a richer representation of
the temporal and dynamic aspects of music. By integrating these modalities,
we expect to enhance the model’s ability to capture the energy and intensity
variations associated with arousal, which are not fully reflected in harmonic
content alone.
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